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GETTING THE GOOD BOUNCE: TECHNIQUES FOR EFFICIENT
MONTE CARLO ANALYSIS OF COMPLEX REACTING FLOWS

ABSTRACT

The direct simulation Monte Carlo method as it is
applied to complex reacting flows is discussed at
length. Relations are presented for the efficient
treatment of energy dependent cross sections, multiple
species and chemical reactions in multi-dimensional
flows. Special emphasis is placed on recent advance-
ments in the method developed at Spectral Sciences,
including the use of dynamically adjustable weighting
factors and global time counters.
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1. OVERVIEW OF THE DIRECT SIMULATION MONTE CARLO METHOD

The direct simulation Monte Carlo method, as pioneered by

G. A. Bird, provides a powerful technique for the simulation

of real gas flows. It bridges the gap between continuum and

free molecular flow, retaining validity in either extreme. It

can be used to describe complex mixtures, including effects of

chemical reactions, heat conduction, viscosity and diffusion

for flows in three dimensions. To date, it is the only approach

which can demonstrate these abilities for general flow

configurations.

The basic calculational technique is well described by its

originator in Ref. 1, to which frequent reference will be made.

The present purpose is to describe how the technique is imple-

mented at Spectral Sciences, Inc. (SSI), with special emphasis

on extensions developed at SSI and elsewhere after the publica-

tion of Ref. 1. Elementary concepts and relations which are

essential to a coherent explanation are included here for

clarity.

The direct simulation Monte Carlo method involves storing a

discrete number of molecules (via their velocities, positions

and other pertinent information) in a computer. The solution

region is broken up into a number of separate cells, and the

solution is stepped forward in time in a two stage process.

First, the molecules are advanced along their trajectories by

an amount appropriate to their velocity and a time increment

At m. In this first stage some molecules will leave the solution

region and some will be introduced as determined by the boundary

conditions for a particular problem. The second stage is to
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simulate collisions in each cell appropriate to Atm so that

collision frequencies are properly simulated. A basic hypothesis

of the method is that if the time step is made small enough the

processes of translations and collisions can be uncoupled in this

manner.

Periodically, the solution is sampled by accumulating sta-

tistical sums of number densities, velocities and other basic

properties. The solution is run repeatedly until statistical

deviations are reduced to a desired limit, and then physically

meaningful output quantities are computed from the statistical

sums. The number of molecules represented is typically a few

thousand at a time, which is vastly fewer than the number of

molecules occurring in virtually all real flows. Hence, the

construction of a dynamically similar flow to be simulated in

the computer is an essential feature of the method.
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2. GAS MODEL AND EQUILIBRIUM PROPERTIES

2.1 Preliminary Equilibrium Gas Relations

For most problems of interest there is a far field equil-

ibrium state whose properties are of relevance to the problem to

be solved. Frequently length and velocity scales for the prob-

lem are obtained from the far field state and used to nondimen-

sionalize the internal code variables. Even when the far field

state is not used for scaling purposes, it still provides an

important comparison case.

For a rest gas in equilibrium the normalized distribution

function for the relative speed, cr, between molecules of spe-

cies i and molecules of species j is given by(2)

ýa2
f . ' (c r - 1 3 c 2 exp \-a ijc 2 • i

i- r r ijr

where

a.. - (2)13 2R0T0

and 1 ij is the reduced mass of the pair; i.e.

m.m. = • 3(3)
•ij -m. + m.mi +M3

with m. and m. representing the masses of the two species. In
1 3

these relations, T. is the far field temperature and R0 is the

universal gas constant. (R0 is used instead of Boltzmann's

constant since the molecular masses will be consistently
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represented in atomic mass units rather than grams.) The avail-

able translational collision energy between two molecules, E ,

is given by

E = 1 2 (4)c 2 ijCr

2.2 Analytical Form of the Collision Cross Section

Whenever the direct simulation Monte Carlo method is applied,

it is necessary to make tradeoffs between accuracy and simplicity

in molecular models. It does no good to use a complex molecular

potential surface and then find that reasonable computer run

times result in very large statistical fluctuations in the out-

put. Since the final output will reflect errors in the statis-

tics as well as errors in the models, there is a strong impetus

to use models which contain the essential physics, but which can

be applied in a computationally efficient manner. The current

state-of-the-art is the Variable-Hard-Sphere (VHS) model.(3)

In this model molecules have a collision cross section which

varies as an inverse power of the available collision energy.

Hence, if a.. is the collision cross section for collisions of•33
species i with species j, :.'-an aij is given 'vy a relation of the

form

.. = A.. E- (5)ij ij c

where A. . is a constant coefficient. It follows that the effec-

tive diameter for molecules of species i, di, is implicitly

defined as a function of available collision energy by the

relation

G.. = 2d2 A..E-W (6)
l 11 C



Aii can be determined from a reference cross section and velocity

via

A.i = oii (icr/4J I . (7)
11 LlllrI -ref

If a reference cross section is given for a reference temperature

rather than a reference velocity, then the usual choice for the

reference velocity is that velocity which has a collision energy

equal to the mean collision energy occuring in collisions at the

reference temperature. Mathematically, this is equivalent to

3
Sra.. (8)

/ref c a..
r ii

where the bars over the quantities indicate averages taken over

the distribution function given in Eq. (1) evaluated for m. = m.3. J
and T = Tref* Equation (8) can be simplified to give

(2) 4(2 - w)R 0Tref (9)
rref mi

For simulations involving a large number of species, refer-

ence cross sections are frequently not available for all possible

collision pairs. In this case it is possible to specify Aii for

self collisions only, and then use Eq. (6) to get a molecular

diameter as a function of collision energy. Then, applying the

relation

S= "[(d + dj /22 (10)

the coefficient in Eq. (5) for interspecie collisions is given by
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2
(NF + V (11)j

For the internal workings of a Monte Carlo code, it is

usually zre convenient to express the collision cross section

as a function of the relative collision velocity rather than the

collision energy. This is simply achieved via the relation

a. = B.jc-2w (12)1] 13 r

where

B. A. (13)

The parameter w can be related to n, the exponent of distance

in an inverse power intermolecular force law via the relation(3)

W = 2/(n - ) . (14)

Hence, hard sphere molecules (for which n goes to infinity) are

represented by w equal to zero. There is a substantial body of

evidence, however, that the effective size of molecules does

indeed decrease with increasing collision energy, so a positive

value of w is usually a better choice. w can be determined from

molecular beam data, or from its macroscopic implications. For

example, if s is the temperature exponent for the coefficient of

viscosity, then it can be shown (3) that

s = w + 1/2 , (15)

so a measurement of the temperature dependence of the viscosity

coefficient serves as an indirect determination of w.

In order to incorporate the model for internal energy trans-

fer to be discussed in Section 4, it is necessary that w be

assumed the same for all interactions. This represents one of

the major restrictions in the current state of modeling.
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Although the sizes of molecules are allowed to vary in the

VHS molecular model in deciding whether or not a collision is to

occur, when a collision does occur the post collision velocity

components are computed as if it were a hard sphere collision

(see Section 4). This results in a substantial computational

simplification and yet retains good agreement with the macroscopic

predictions of the more exact model.(3) (See Ref. 1 for a dis-

cussion of molecular scattering for general power law potentials.)

2.3 Equilibrium Reference Properties for a Multi-Component Gas

One advantage of the VHS model is that the molecules have a

well defined cross section, so it is possible to define a mean

free path without putting limitations on the minimum deflection

angle that is considered. As is the general case for multi-

component gases, however, each component has its own mean free

path, and the overall mean free path for the mixture must be

defined as a weighted average of the mean free paths of the indi-

vidual species. The somewhat cumbersome relations required to

calculate the overall mean free path are given here. It should

be noted that the mean free path is calculated only once for a

given problem, so the computational effort required to evaluate

it is completely negligible.

An individual molecule of species i will suffer collisions

with molecules of species j with a frequency 'u given by

V = n. . c (16)

ij ij r

where n. is the number density of species j and .c is the300 13 r
average product of cross section times relative velocity for the

two species, obtained by integrating over the distribution func-

tion given in Eq. (1). When this operation is performed, the

result is
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3 ' r (2 - w) a' - 1/2 (17)
Tr t

where r denotes the gamma function.

The total collision frequency for an individual molecule of

species i, vi, is obtained by summing Eq. (15) over all species,

i.e.

p
Vi Z v" (18)

j=l

and the mean free path, Xi, for molecules of species i is given by

F8 R T. (19A. = ci/vi - 0• /'i , (19)
. i

where ci is the mean molecular speed for species i molecules.1

The mean free path for the gas mixture, X., is then defined as

the number density weighted average of the Xi via

S11

Pn. X.
0 10 1 (20)

S~i=l O

where n is the total numher density:

P

n.0 = niO (21)

A useful velocity scale is given by vs, defined by

2RoT0
V s (22)
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where m is the reference mean molecular weight, i.e.

m = . (23)

vs is the most probable molecular speed for molecules of the

mean molecular weight at the reference temperature.

2.4 Internal Energy Model

The current state of modeling for internal energy effects

in Monte Carlo flow field simulations is the phenomenological

model of Borgnakke and Larsen. (4) In this model, transfer of

energy between internal and translational modes is allowed,

but it is necessary to assume that each species has a fixed

number of internal degrees of freedom, Ci" This is equiva-

lent to assuming a constant specific heat, Cpi, for each species

which can be related to the number of internal degrees of free-

dom via

C .m.
= 2 P1 - 5 (24)i R 0

Alternatively, 1i can be related to the ratio of specific heats

for species i, yi, by the relation

5 - 3yi5 1 
(25)

The interchange of internal and translational energy will be

discussed in Section 4, and the selection of initial conditions

will be considered in Section 7.
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3, INTERNAL REPRESENTATION

3.1 State Vector

Each simulated molecule in the direct simulation Monte Carlo

method is represented by a state vector which comprises all of

the information the code has with regard to that particular

molecule. The state vector has:

e Position element(s) defining the location of the

molecule in the coordinate system being used. For

axisymmetric simulations, this is a radial and an

axial element.

* Three velocity elements. A molecular collision is

always considered as a three dimensional event,

regardless of the overall dimensionality of the

problem. For spatially one dimensional problems

it is possible to store only two pieces of velocity

information and compute the required three velocity

components as needed for collision sampling. This

is an example of the frequent tradeoff which must

be made between storage and computing requirements.

e A value for the internal energy of the molecule.

Note that the basic model does not discriminate

between internal modes for a particular species.

This can be done, if desired, by introducing

separate species for the separate modes.

e An indicator determining the molecular species.

This indicator in turn implies all of the proper-

ties associated with that species (molecular weight,

number of internal degrees of freedom, name, etc.).
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* An indicator giving the cell in which the molecule

currently resides. It is possible to avoid allo-

cating this particular storage element, but it

usually results in enough computational simplifica-

tion to justify its use.

3.2 Reduction to a Reasonable Number of Simulated Molecules

It is clearly impossible to run a computer simulation with

anywhere near the same number of molecules that exist in the

actual flow problem. The adjustment that is made to make the

simulation possible is to artificially increase the cross sec-

tion, and decrease the number density, by a large factor. It

is the product of number density and cross section which deter-

mines the collision frequency for a given molecule, and it is

the collision frequency which must be correctly simulated if the

correspondence between the real and simulated flows is to be

correct. This is an essential feature of the direct simulation

method which has not always been adequately emphasized. It

means that the internal scaling factors do not proceed on a

strictly dimensional basis. For example, the scaling factor

for cross sections is not the square of the scaling factor for

lengths.

3.3 Internal Scales

Many problems are more reasonably handled if the internal

calculations are carried out with scaled or dimensionless values.

This avoids possible problems such as numerical overflow which

can cause an execution time error. Such errors can be particu-

larly insidious and difficult to locate in a code whose very

essence involves the random combination of numbers. Furthermore,

12



examination of scaled values makes the detection of erroneous

values easier while debugging codes since large exponents are

usually indicative of an error when the variables are internally

scaled. At SSI, at least, the output is produced in physically

meaningful dimensional form. Hence, the scaling that is discussed

here is irrelevant (or nearly so) to the interpretation of code

output; it is strictly a matter of the internal representation.

The obvious choices for length and velocity scales are

and vs as defined in Section 2, which are used to nondimension-

alize the position and velocity elements of the state vector.

There is no need to provide further nondimensionalization of

mass beyond representing them in atomic mass units, so none is
2

provided. Hence, the scaling factor for energy is just vs, which

is used to nondimensionalize the internal energy element of the

state vector.

Number densities are scaled with respect to the far field

reference number density, n., which leaves only the cross sec-

tion scaling factor to be determined. This factor follows from

the condition of flow similarity, which requires that the prob-

ability of a molecule suffering a collision in traveling a given

path len%.h be accurately simulated. This dimensionless proba-

bility can be expressed as the product of a cross section times

a number density times a path length (at least for small enough

path lengths), and it is required that this product be the same

for dimensional and scaled representations. This implies that

the product of the scaling factors for these three quantities be

unity and, therefore, the cross section scaling factor is

i/(n X0 ). The internal scaling factors used for the SSI Monte

Carlo codes are summarized in Table 1.

13



TABLE 1 - SCALING FACTORS USED FOR THE INTERNAL
REPRESENTATION OF QUANTITIES IN THE SSI

DIRECT SIMULATION MONTE CARLO CODES.
ALL VARIABLES ARE DEFINED IN SECTION 2.

PROPERTY SCALING FACTOR

Length

Velocity v

Time X 0/vs

Number Density no

Mass a.m.u.

Energy (a.m.u.)v 2s

Cross Section 1/ (n..)

3.4 Weighting Factors

Weighting factors are a crucial element of a successful

Monte Carlo simulation, allowing trace species to be described

with reasonable statistics. The weighting factor is the number

of "real" molecules that corresponds to each "simulated" molecule.

A "simulated" molecule corresponds to one molecule's worth of

storage (one state vector) allocated in the computer, and the

weighting factor is its statistical weight. So, for example,

the total number density in a cell might be represented

ncell = V ' (26)

i=l
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where N. indicates the number of simulated molecules of species

i in the cell, Wi is the weighting factor for that species in

that cell, V is the cell volume and p is the number of species.

The product NiWi that appears in Eq. (26) is termed the number

of "real" molecules of species i in the cell. Note that ncell

as calculated by Eq. (26) is a scaled value; it would have to

be multiplied by n., as shown in Table 1, to become a dimensional

evaluation of the number density.

The weighting factors used in the SSI codes are dependent

on cell and species. Hence, flowfields where a given species

is much more dominant in one portion of the solution region than

another can be accurately represented. It is possible, of course,

to make weighting factors functions of other variables, such as

velocity, for specialized purposes.

A critical error that can occur in Monte Carlo codes is to

have the number of simulated molecules exceed the dimensioned

limit of the code. On the other hand, it is generally desirable

to have as many molecules as is feasible to obtain good statis-

tics. Resolution of these conflicting considerations is compli-

cated by lack of a priori knowledge of what the species number

densities will be as a function of space and time. The way the

resolution is achieved in the SSI codes is by a dynamic adjust-

mentof the weighting factors, as required. This keeps the

number of simulated molecules more or less constant while

allowing the number of real molecules to adjust as the solution

evolves. The introduction of weighting factors, with the abil-

ity to adjust them as the solution demands, is an important

feature of a successful Monte Carlo description.
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4, COLLISION MECHANICS

4.1 Relations for Elastic Collisions

The purpose of this section is to present relations

appropriate to the simulation of a collision in a Monte Carlo

flowfield code. (The question of how molecules are selected for

collisions, which is crucial to the proper simulation of colli-

sion frequency, will be taken up in Section 6.) Conservation of

momentum implies that the center-of-mass velocity of the colli-

sion pair is unchanged by the collision; and conservation of

energy then implies that the magnitude of the relative velocity

between the collision partners is also unchanged by the colli-

sion.(5) Since the collision is treated as a statistical event,

all that remains is to select the direction of the post-collision

relative velocity vector from the correct distribution. As

mentioned in Section 2.2, collisions ii the VHS model are

treated as hard sphere collisions when they occur (though they

do not occur with the same velocity dependence as do hard sphere

collisions). Hence, as far as the collision mechanics is con-

cerned, the model is a hard sphere model. For hard sphere

molecules, all directions for the post-collision relative

velocity vector are equally likely. This is the chief computa-

tional simplicity of the VHS model.

Let the two molecules be identified by subscripts 1 and 2,

with m and v denoting their masses and velocities. If i and f

indicate initial and final states, then the relations for the

collision can be summarized via:
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mlvli + m2 v 2 i

V cm m1 + m2  '(27)

v = I - '2iI (28)

cosC() = 1 - 2ý , (29)

sin(S) = 1 - cos 2 (C) , (30)

= 218 , (31)

Vrf = vr [cos(e), sin(O)cos(f), sin(m)sin(f)J , (32)

Vlf = V-cm + +m 2  rf (33)

and
m1

V2 f = m m1 + m 2 Vrf (34)

In these relations, and throughout this report, 8 indicates

a random variable which is evenly distributed on the interval

zero to one. Each time that a appears a different evaluation of

the random variable is implied. Note that the expression for the

post-collision relative velocity vector (Eq. (32)) is not coordi-

nate system specific. The indicated vector components can apply

to any locally orthogonal coordinate system, since the direction

implied is random. The convenient coordinate system to use, of

course, is the coordinate system used to define the velocity

elements of the state vector. For axisymmetric simulations this

will be radial, azimuthal and axial velocity components.
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4.2 Simulation of Inelastic Collisions

The SSI codes use the Borgnakke and Larsen(4) phenomenolog-

ical model for transfer of energy between internal and transla-

tional modes. In this model, a collision is assumed to be either

perfectly elastic or perfectly inelastic, via a user specified

probability. A perfectly inelastic collision is achieved by

summing the total pre-collision energy (internal energy of both

molecules plus the translational energy of their relative motion,

Eq. (4)) and then assigning post-collision values from the

equilibrium distribution for collisions with that total amount

of energy, taking into account the number of internal degrees of

freedom in the two molecules. Note that this model has the

ability to relax from a nonequilibrium to an equilibrium state

via an effective collision number. The ability to exchange

internal energy in such a manner comprises a significant increase

in capability for Monte Carlo codes beyond the previous models

where molecules had no internal energy. It is this capability

which enables the codes to realistically predict the macroscopic

effects of polyatomic gas flow.

Let Ci and 2 be the number of internal degrees of freedom

of the two molecules in an inelastic collision, and E5 be the

total collision energy defined by

Es = Eci + Eli + E2i , (35)

where Eci is the initial translational collision energy defined

by Eq. (4), and Eli and E2i are the pre-collision internal ener-

gies of the two molecules. If ý is defined by
S= E cf/Es F (36)

where Ecf is the post-collision translational energy, then ý is

selected according to the distribution

18



f(•) A 1-W•(i )b (37)

where

A -_C> W --W (38)A 1 W I >'(8

b = < - 1 , (39)

and

<>= (l + C2)/2 " (40)

The sampling of Eq. (37) is done via a technique that is

used frequently in Monte Carlo flowfield codes, the acceptence-

rejection method. Equation (37) has been normalized so that the

maximum value of the function is unity, and the parameter of the

distribution, ý, varies from zero to one. The sampling is done as

follows:

9 Choose a random value of •. I.e., set ý equal to

8, a random variable.

* Evaluate the distribution function for this value

of E, and call it ftest*

* Get a second random variable, and check to see if
it is greater or less than f test If it is greater

than ftest' go back to the first step and repeat

the process. If it is less than ftest' then keep

the value of C obtained in the first step.

Note that the probability that any original value of ý will be

kept is proportional to f(E). This is an extremely general tech-

nique and, as such, is very powerful. It is not always efficient,

however, and direct sampling of distributions is usually to be

19



preferred if it can be accomplished. In this case, if one mole-

cule is monatomic and the other is diatomic, i.e. if <C> = 1,

then a direct sampling of the above distribution is achieved via

S= a[l/ (2-w)] , (<C> = 1) . (41)

Once C, and therefore the post-collision translation energy,

is determined, the magnitude of the post-collision relative

velocity is defined via

Vr = ý2Ecf/1J 1 2  . (42)

For inelastic collisions, this relation takes the place of Eq.

(28) in the determination of the post-collision velocity elements

of the state vectors.

The remainder of the collision energy must be divided up

between the internal modes of the two molecules. If one of the

molecules is monatomic (i.e., has zero internal degrees of free-

dom), then all of the internal energy goes to the other by default.

Otherwise, if x is defined by

x = EIf/(Es - Ecf) , (43)

where Elf is the post-collision internal energy of the first

molecule, then x is just the fraction of the total post-collision

internal energy that ends up in the first molecule. x is distri-

buted with a probability proportional to f(x), given by

f(x) B xc(l-x) d (44)

where

B = [(>-2) (<ý>-2 ) 1/[c cd di (45)

C = •i/2- , (46)
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and

d = •2/2- . (47)

Equation (44) can be sampled via the acceptance-rejection method

to determine the allocation of the internal energy for the general

case. For the special case of both molecules being diatomic, Eq.

(44) becomes singular, with the limit being the trivial case that

all distributions of internal energy are equally likely, i.e.

x = 8 ' (ýi = C2 = 2) . (48)

For the special case of just one of the molecules being diatomic

(molecule 2, for instance), then the distribution for x can be

sampled directly via

x = 1) '1 (2 = 2) , (49)

with the obvious reciprocal relation applying for C1i = 2. The

SSI codes recognize these special cases so that the sampling can

be expedited when possible, while retaining the full generality

of Eqs. (37) and (44) when required.

4.3 Collisions for Molecules with Distinct Weighting Factors

There is an obvious problem when considering a collision

between two simulated molecules with distinct weighting factors,

since they represent a different number of real molecules. If

WU and WL represent the weighting factors for the two molecules,

with WU being greater than WL, then the collision is always

counted as WL "events". This izi accomplished by always assign-

ing post-collision velocity and energy components to the state

vector of the molecule with the smaller weighting factor, but

only changing the components of the molecule with the greater

weighting factor some of the time. The probability" that the
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molecule with the greater weighting factor will have its compon-

ents changed is simply WL/WU. Statistically, this means that

for a large number of simulated collisions, each such simulated

collisior± will average out to WL real collisions for each species,

even though their weighting factors differ. It should be noted

that this does violate ccnservation of momentum and energy on an

individual collision basis, but these quantities are conserved in

the aggregate over a large number of collisions.

4.4 Reactive Collisions

A realistic simulation of chemical reactions is a crucial

element of many problems. If a bimolecular reaction of the form

A + B - C + D (50)

has an Arrhenius rate constant of the form

k = ArTn exp(-Ea/RoT) , (51)

then it is possible to define a reactive cross section as a func-

tion of translational collision energy such that the above rate

constant is implied for a gas in translational equilibrium. (In

Eq. (51), T is temperature, Ea is the activation energy, n is a

dimensionless exponent and A is a prefactor.) The product ofr
reactive cross section, a*, times relative velocity can be

expressed (3)

(1 + 6..) V-A Evro* r 1- a (E - E) , (52)
Vr G*n E ( c -Ea)(2

2R0 r(n + 3/2) c

where 6.. is unity for like reactants and zero for unlike reac-13
tants. The probability of a collision resulting in a reaction is

given by the ratio of the reactive to the gas kinetic cross sec-

tion at the existing relative velocity between the molecules.
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In the SSI Monte Carlo codes, the following procedure is

used to determine which, if any, reaction will occur:

"* All possible reactions are identified for the pair

of molecules which are selected to experience a

collision. If there are no such reactions,

the procedure is bypassed.

"* The probability of each allowed reaction is calcu-

lated by computing the reactive to gas kinetic

cross section ratio.

* If somehow the reactive cross section(s) total

to a greater value than the gas kinetic cross

section (which will rarely be the case) then

the probabilities are normalized by their sum.

"* The collision is taken to be reactive with a prob-

ability equal to the sum of the individual reaction

probabilities.

"* If the collision is reactive, the reaction that

occurs is selected in accordance with its

probability.

* If no reaction is decided upon, then the collision

is either elastic or inelastic according to the

user specified probability.

Equation (52) becomes singular for n < -3/2, and this pro-

cedure cannot handle that case. The major limitation of this

procedure is that it ignores the effect of internal energy in

determining whether or not a reaction can occur, assuming that

the entire activation energy barrier must be overcome through

translational energlr. If a specified fraction of the molecular

internal energy is allowed to contribute to overcoming this
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barrier, then the restriction on n is relaxed somewhat (see

Ref. 3), but this feature is not presently implemented in the

SSI codes.

4.5 Post-Reaction State Definition

The post-reaction state is simply determined by adding the

heat of reactionto the total collision energy (translational

plus internal) and then computing reactant state vectors for the

products based on this total energy and the reactants center-of-

mass velocity, as for inelastic collisions. Although this is

clearly an oversimplification, it is quite consistent with the

phenomenological nature of the model.

The position state vector components for the products are

randomly selected from the position state vector components of

the reactants, which are not the same (see Section 6). The

major additional complication of chemical reactions is that of

distinct weighting factors. Since the reaction is WL "events"

(see Section 4.3), it only destroys the reactant with the greater

weighting factor with a probability of WL/WU. If Wp is a product

weighting factor, it is necessary to produce WL/Wp simulated

molecules of that product. In general this is not an integer

quantity, so it is necessary to interpret the ratio statistic-

ally so that the expectation value is proper. That is, sometimes

the next lower integer is selected and sometimes the next higher

one, with a probability that reflects how close each integer

value is to the desired fractional quantity. (See the discussion

of molecular cloning in Section 5.2.) Of course, the weighting

factors for the two products will in general be different,

resulting in a different number of simulated molecules being pro-

duced for the two products. Sometimes this process could result
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in a very large production of simulated molecules for a product

with a small weighting factor. In order to prevent overflow of

code dimensions it is necessary for the code to sense when this

is happening and automatically increase the product weighting

factor to prevent it.

4.6 Dissociative Reactions

The situation for dissociative reactions is somewhat compli-

cated by the presence of three rather than two products. With a

little manipulation, however, it is possible to use the previous

relations for this case as well. Let Mi, M2 and M3 represent the

three product molecules from a dissociative reaction, with a

known center-of-mass velocity and total energy. The procedure

for defining the post-reaction state is to first define an arti-

ficial complex comprised of the (M2 ,M 3 ) pair. (There is no

implication that there actually is any such collision complex.)

The complex is assigned a number of internal degrees of freedom

equal to c' given by

•c+= 2 + 2(2 - w) , (53)

where the last term represents the contribution of the relative

translation between M2 and M3 .

The fact that this term is not simply three, as it would

seem it should be, merits some explanation. It is due to the

fact that these molecules are not random samples from the gas but

rather special molecules owing to their being created in a reac-

tion. This point can perhaps best be seen by considering micro-

scopic reversibility, where the inverse reaction is a three body

recombination. For this reverse process, molecules participating

in it are not all equally probable, since those with greater
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relative velocities are more likely to collide. Hence, the term
does take on the value three for the special case of w equal to

1/2, which is precisely the case of collision frequency being
independent of relative velocity. Examination of Eqs. (37) and
(44) demonstrates that translational energy in collisions behaves
like another source of internal energy with 2(2 - w) degrees of

freedom.

With the number of degrees of freedom defined, the separa-

tion of Mlfrom the (M2 ,M3 ) complex is treated as an inelastic
collision. The resulting velocity for the complex is then

treated as the center-of-mass velocity for M2 and M3 , and the

internal energy assigned to the complex becomes the total energy
for the pair. Using these values, M2 and M3 are then separated
in another application of the rules for inelastic collisions.
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5. MOLECULAR TRANSLATIONS

5.1 Translation in an Axisymmetric Coordinate System

As discussed in Section 1, an essential element of the direct

simulation Monte Carlo method is the periodic advancement of sim-

ulated molecules along their trajectories. Formally, this is

accomplished by updating the position and velocity elements of

the state vector. For a cartesian coordinate system this is a

trivial process, but the relations are slightly more complicated
for the often used axisymmetric coordinate system. Let vrO0

v00, and vzo represent the initial radial, azimuthal and axial
velocity components of a molecule, with r 0 and z 0 representing

its initial radial and axial position. Additionally, let 0

represent the initial azimuthal angle for the molecule. This is

included here just for demonstration purposes; it will not gen-

erally be known, nor, as will be shown, will it be needed.

The initial position and velocity of the molecule can then

be referenced to a standard cartesian coordinate system, yielding

I r0 cos( 0 ) - v 00 sin(O 0 )]i

+ Vr0 sin(%o) + v 0 cos(o)] J

+ v kzO

Vx0 i + Vy0 j + Vz0 k (54)
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and

r0= Ir0 cos(0 0 )] + [r0 sin(#0) 3 + z k

Sx 0 1 + Y0 3 + z 0 k . (55)

After a time increment Dt, the position vector of the molecule

will be

r 1 ((x0 + Vx 0 Dt) i + (y 0 + Vy 0 Dt) j + (z 0 + V Dt) k

Sx 1 i + yl j + zI k , (56)

and, in the absence of perturbing forces, the velocity vector will

remain unchanged in the cartesian coordinate system. It will

change in the axisymmetric coordinate system since the basis

vectors are a function of position and the molecule has moved.

The new radial position is
4 2

xl + Yl

- N(r0 + vrO Dt) 2 + (vý 0 Dt) 2 , (57)

and the new axial position is

z1 = z 0 + Vz 0 Dt . (58)

The radial velocity component in the coordinate system appropriate

to the new molecular position can be determined by noting

V rl =(v 0 ) (r 1 )/r 1

= vr 0 (r 0 + Vr 0 Dt) + v 0 (v 0 Dt]/r 1 (59)
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and it can similarly be shown that

V = v 0 (r 0 /r 1 ) (60)

and

Vz1  = V 0  . (61)

Equations (57) - (61) give the updated position and velocity

elements of the state vector for a translation in an axisymmetric

coordinate system. Note that these relations are indeed independ-

ent of .0' A similar procedure applies for molecular transla-

tion in other coordinate systems.

5.2 Molecular Cloning

When a simulated molecule is translated from one cell to

another, the weighting factor for that species will generally

be different in the new cell. Since it is the number of real
molecules rather than the number of simulated molecules which

must be preserved when crossing cell boundaries (statistically,

at least), it is necessary to correct for the distinct weighting

factors (see Section 3.4).

If the weighting factor before translation is W0 , then the
simulated molecule represents that many real molecules. If the
weighting factor in the new cell is WI, then W0/W 1 simulated
molecules would be required to represent the same number of real

molecules in the new cell. If this ratio were a whole integer,

then this could be accomplished by introducing that many "clones"

of the molecule in the new cell. That is, that many simulated
molecules would be placed in the new cell, all with the same

state vector.
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When the number Wo/W 1 is not an integer (the isual case, of

course), then the cloning must be done on a statistical basis.

So, for instance, if W0 /W 1 were equal to 2.7, then 30% of the

time two clones would be produced and 70% of the time three

would be produced. Note that the ratio may be less than unity,

and the molecule may not be introduced into the new cell at all.

(In which case the molecule is removed from the simulation.)

Cloning is a necessary evil inherent in a system with spa-

tially dependent weighting factors. It enables such a system to

maintain the statistically correct flux of mass and momentum

across cell boundaries, but it misrepresents the flux of random-

ized or thermal energy. This can be seen by an extreme case

where a very large number of clones is produced when a simulated

molecule crosses a cell boundary. The resulting molecules in

the new cell have the correct mass and momentum flux, but since

they all have precisely the same velocity they have a null rela-

tive velocity, and therefore a zero temperature. If the weighting

factors are not too different between adjacenL cells, then

the errors introduced by this process are acceptably small.

However, it does mean that one cannot arbitrarily improve statis-

tics in one portion of the solution region by selectively reduc-

ing the weighting factors there. This was a difficulty which was

encountered in the early stages of the direct simulation Monte

Carlo method while trying to improve statistics along the axis of

axisymmetric simulations, since the cell volumes (and therefore

the sample sizes) tend to be smallest on the axis.

As was the case for simulated molecules produced via chemical

reactions, it is possible for the weighting factors between suc-

cessive cells to be so different that a prohibitively large number

of simulated molecules would be required to produce the same
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number of real molecules. This is most frequently the case when

a new species is being introduced, since before the species gets

there the weighting factor is initialized to a very small number.

The codes sense when a disproportionate number of simulated mole-

cules are being produced for a given species and cell, and adjust

the weighting factor automatically. As the weighting factor is

increased, a proportionate fraction of molecules of that species

and cell are removed from the simulation in order to keep the

number of real molecules properly represented. This process

enables the weighting factors to seek their own proper level
without a priori knowledge of the solution. (Periodically,

the cells are examined to determine if a certain species has

been underrepresented in terms of number of simulated molecules.
If it is found to be the case, then the weighting factor is
decreased, allowing weighting factors to float downwards as well

as upwards. It is the danger of weighting factors being too

small, causing an overflow of code dimensions, which is most

critical, however.)
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6. COLLISION SAMPLING IN A MULTI-COMPONENT VHS GAS

6.1 General Considerations and Approach

The two general considerations in the sampling of collisions

are, as usual, accuracy and efficiency of the simulation. As

far as accuracy is concerned, it is crucial that the method in

which molecules are selected for collisions be proper. It is

imperative that the correct collision frequencies be simulated

between various species, and, in fact, between the different

portions of the velocity phase space for the various species.
Furthermore, this frequency of simulated collisions must remain

correct without any requirements put on the velocity distribution

function; it certainly must not be assumed that there is a
Maxwellian velocity distribution.

As far as efficiency is concerned, it is highly desirable

to use a method of collision sampling involving a computational
effort which is proportional to the number of simulated molecules,

N, in a cell. Methods which are proportional to a power of N
greater than unity can become prohibitively time consuming as

the number of molecules is increased - a limit which should be

made as accessible as possible for obvious physical reasons.

6.2 Collision Sampling for a Single Component Gas

The simplified situation of a simulation involving only one
species is considered here. This problem is significant in part

due to all the attention it has received and, as will be seen,

it serves as an important reference case. When there is just
one species, then there is just one gas kinetic cross section

32



(though it is still, of course, a function of collision energy),

just one molecular weight and just one weighting factor for each

cell. In short, just one of everything that has a molecular sub-

script. Hence,in this subsection all such quantities will be

presented without subscripts. The most important simplification

of having a single species is that there is just one collision

class, i.e., only self-collisions of the given species with it-

self are possible.

6.2.1 Collision Pair Selection

As discussed in Section 1, in the direct simulation Monte

Carlo method collisions are sampled on a cell by cell basis

until the number of collisions simulated is appropriate to the

overall solution time step, Atm. The only spatial requirement

placed on potential collision partners is that they be within

the same cell. In particular, it is not required that they be

within a molecular diameter of each other. (Note that if all

pairs of molecules were inspected to find those that were suffi-

ciently close to each other, this would involve a computational

effort in proportion to the square of the number of molecules in

the cell.) The rationale for this is that the cells should be

taken small enough such that macroscopic properties can be

assumed constant across the cell. When this is the case, then

a molecule within the cell can be considered typical of a mole-

cule which might exist anywhere within the cell, and molecular

location can be ignored when selecting potential collision pairs.

Spatial consideration aside, the probability of any two

molecules experiencing a collision is proportional to ac r, the

product of their mutual cross section times their relative velo-

city. This probability is correctly simulated via an application
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of the acceptance-rejection method if pairs of molecules are

selected at random, and then kept or rejected as collision

partners with a probability proportional acr. This is accomp-

lished by keeping a maximum value for ac r for each cell (which

is updated if a larger value is encountered) and computing the
ratio r defined by

acccr
r -- rc) (62)(acr)max

A random variable, S, is then generated, and the pair of molecules

is accepted as collision partners if r is greater than 0. This

produces the proper relative collision probability without regard

to the existing velocity distribution function.

6.2.2 Collision Time Counter for a Single Component Gas

The volumetric collision frequency for a single component
gas, v (collisions per unit volume per unit time), is given by

1 n ccr (63)

where, as in Section 2, n represents the number density of the

species and acr is the average product of collision cross section
and relative velocity. At first inspection, it would seem from

Eq. (63) that a correct simulation of collision frequency would
require evaluation of 7Cr, which would mean that all pairs of

molecules in a cell would have to be considered. Such a proced-

ure involves a computational effort proportional to N2 and is to
be avoided, if possible, in preference to a method which is

simply proportional to N.
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The alternative approach, introduced by Bird, is the time

counter approach. For each collision a time counter, tc, is

incremented by an amount that depends on the relative velocity

of the collision. Collision sampling continues in a cell until

its time counter has been advanced beyond the overall flow simu-

lation time, at which time the code proceeds to the next cell

(which has its own time counter). The time counter increment,

Atc is given by

c2

Atc = (64)
Vn2 cr

where V is the cell volume and n is the species number density

given by

n = NW/V , (65)

with W being the weighting factor for the species. (Equation

(65) is just a special case of Eq. (26).) It should be stressed

that Eq. (64) applies for each real collision. As is discussed

in Sections 3.4 and 4.3, each simulated collision corresponds to

W real collisions, so when a simulated collision occurs the

actual applied increment to t is W times the value given byc

Eq. (64).

It is not obvious that Eq. (64) will lead to a proper simula-

tion of the overall collision frequency, so a demonstration will

be presented. Let f 1 (cr) be the normalized distribution function

for relative velocity appropriate to a given cell at a given time.

(Note that most problems solved by a Monte Carlo technique involve

repeated runs, where the total number of collision pairs can be

made arbitrarily large. The introduction of a distribution func-

tion, and therefore the demonstration of the correctness of Eq.

(64) is strictly valid only in the limit of infinitely many runs.
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Since the essence of the method is a correct statistical repre-

sentation, it could not be otherwise.) By definition,

I f1(cr )dcr = 1 , 
(66)

0

irrespective of the particular form for fl" Let f 2 (cr) be the

normalized distribution function of relative velocity occurring

in collisions. Since collisions occur with a probability pro-

portional to ocr, f 2 can be constructed from f1 via

cr
f 2 (cr) = fl(Cr) r (67)

ocr

where cr can now be formally defined via

ocr = f 1 (c)cdr " (68)

0

(Note that in Eq. (68), as in the rest of this demonstration, the

functional form of the dependence of cross section on relative

velocity need never be specified. The time counter represented

by Eq. (64) is therefore not restricted to any particular model

for the cross section.)

The average increment of the time counter that is applied

over many simulated collisions is therefore given by

At--c = f2 (cr)Atc (cr)dcr (69)

0

If Eqs. (64) and (67) are substituted into Eq. (69), the result is

_ 2 (70)
Atc 2 __(0n Vo r
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where the normalization condition (Eq. (66)) has been utilized.

The implication of Eq. (70) is that, on average, the frequency

of collisions in the cell is Vn2Or/ 2 . Since this is simply

the product of cell volume times the proper volumetric collision

frequency (Eq. (63)), the validity of the time counter given in

Eq. (64) has been demonstrated.

6.3 Collision Class Sampling in Gas Mixtures

The above procedure for a single species gas can be extended

to a multi-component mixture via consideration of distinct colli-

sion classes. In this approach, collision classes are defined

by the colliding pair identities. Hence, if there are p species

in the simulation then there are p(p+l)/2 collision classes,

which can be identified by the subscripts of the corresponding

molecular pair. (The number of classes is not p2 since the

order of molecule specification is not taken to matter in

determining a collision class. Hence, the class identified by

the subscripts i,j is not distinct from the class identified

by the subscripts, j,i.)

In collision class sampling, which is the method used by

Bird,(I) each collision class is sampled separately, and the

collision sampling in a cell is not complete until all classes

have been considered. Each collision class has its own stored

value of (aijcr)max , and its own separate time counter, tcij"

By a comparable analysis to that presented above, it can be

shown that the appropriate time counter incremant in this case is

Atcij ninjVi jcr (71)

where, as in Section 4, 6ij is the Kronecker delta which is

unity for i = j and zero otherwise. As in the previous section,
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the above increment applies for each real collision. A simulated

collision corresponds to WL real collisions, where WL is the les-

ser of WI and W. (see Section 4.3), so when a simulated collision
occurs, the applied increment to tcij is WL times the result of

Eq. (71).

6.4 Global Collision Sampling in a Gas Mixture

Although the procedure described above is quite reasonable

for, say, a two component mixture, it becomes quite complicated

as the number of species increases. For 10 species, for instance,

the program must loop over 55 distinct collision classes for each

cell, and storage must be allocated for 110 quantities in each
cell. As the number of species increases, the storage require-

ment for the collision sampling constants quickly becomes greater

than the storage required for the molecular state vectors! The
obvious simplification is to search for a technique where colli-

sions are simulated simultaneously for all collision classes,

with each class having its proper relative probability of being

selected. The overall collision sampling then continues until

a single time counter indicates that sufficient collisions have

been sampled in the current time step and cell.

6.4.1 Global Collision Time Counter

If molecular pairs are selected for collisions such that

the various collision classes automatically appear with the proper

relative frequency (see below), then it is not necessary to con-

sider separate time counters for all the various collision clas-

ses. One approach that could then be applied is to keep a
collision time counter for just one collision class, and incre-

ment it when collisions of that class occur. If the various

collision classes are being selected according to their correct
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relative frequency, then simulating the proper frequency for one

collision class will ensure, in the long run, that all collision

classes are occurring with the correct frequency. A disadvantage

with this approach is the necessity of making an arbitrary choice

for the collision class which is to have a time counter. Further-

more, there may be no good choice in a reacting flow where the

dominant species may vary strongly from place to place. (Clearly,

one would not want to select a class of collision that does not

occur in a given cell, since the result would be a never ending

sampling of collisions of other classes.)

The preferred approach is to define a global collision

time counter, tg, which is a weighted average of the time counters

of all collision classes; i.e.

p i

t i= j=l (72)
tE = D ij

i=l j =i

where the D are nonnegative coefficients which can be selected

at will. Note that in this formulation every collision will

result in some increment of the global time counter (unless
D.. = 0 for that class), so the collision sampling frequency1J
is not dependent on any one collision class.

It remains, of course, to specify the D... A very convenient

choice is given by

n.n.
D.. = 1 (73)

J (i + 6ij)
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Firstly, Eq. (73) is convenient because it tends to make the
collision classes with the higher collision frequencies count

more, resulting in good statistics for t irrespective of cellg
location. (Note that Dij is cell dependent since the species
number densities z e cell dependent.) Secondly, Eq. (73)

results in a particularly convenient form for t . The norn-
alizing factor in the denominator of Eq. (72) can be summed to

give

P i niS

= 2 + E ij) tcij (74)
S n 2i=l j=l1

Hence, a collision of class ij, which would produce an increment
of Atcij to its own time counter produces an increment At to tg

given by

Atg - 2 ( ij tc) , (75)
n (I cij

where, again, n is the total number density of all species in the
cell. If Eq. (71) is substituted into Eq. (75), the result is

Atg 2 2 (76)
Vn a. .jc

Equation (76) is extremely significant since it recaptures the
precise form of the time counter increment for a single species
(Eq. (64)), but indicates that it is completely valid for a multi-
component mixture so long as the various collision classes are

sampled with the proper relative frequency.
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6.4.2 Collision Pair Selection in Multi-Component Mixtures

When considering selection of collision pairs, it is crucial

to remember the distinction between real and simulated molecules

discussed in Section 3.4. Given two simulated molecules selected

at random from within the cell, the probability of their having

a real collision is proportional to WiWjaijcr. However, real

collisions cannot happen individually; they come W L at a time,

where WL is the lesser of Wi and Wj. Hence, when a collision is

decided upon in the program, WL of them will occur. To compen-

sate for this, potential collision pairs should be accepted for

collision according to the size of Q given by

Q = WuaijCr c (77)

The relative frequency of real ij collisions will then be propor-

tional to the product QWL (the relative probability of a pair

being accepted for collision times the number of real collisions

occurring when the pair is accepted), which is the desired rela-

tion. Selectionof collision pairs with the correct relative

frequency then assures that incrementing the global time counter

as discussed above will give a statistically correct sampling of

all collision classes simultaneously.

6.4.3 Summary of Collision Sampling in Multi-Component Mixtures

The results of this section can be summarized via the fol-

lowing procedure for the sampling of collisions:

e Each cell has a (current) maximum value of Q, Qmax'

that has been encountered so far in the collision

sampling process. Whenever a larger value is

encountered, Qmax is set equal to that larger
value.
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* Each cell has a current value of the global time

counter, tg.

* Pairs are selected at random from all molecules

within the cell.

e For each pair, Q (as defined by Eq. (77)) is

computed.

* The ratio of Q to Qmax is computed, and a random

variable is generated. The pair is accepted for

collision if the random variable is less than the
ratio. (If the pair is not accepted, then another

random pair is selected. The process continues

until a pair is accepted.)

* For an accepted pair, the collision mechanics are

computed as described in Section 4. This always

corresponds to WL collisions.

o The global time counter is incremented by WLAtg,

where At is given in Eq. (76).

* The process continues until the global time

counter goes beyond the overall flow time. At
that point, the collision sampling is commenced

in the next cell.

* When all cells have had collisions simulated, then

the code proceeds to the translation portion. (See

Sections 1 and 5.)
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7. INITIAL AND BOUNDARY CONDITIONS

7.1 General Considerations

The initial and boundary conditions necessary to simulate

a problem frequently do not receive their fair share of consid-

eration. It is these conditions which usually distinguish one

solution from another, and their correct and efficient specifica-

tion should be a central concern. Nonetheless, there is clearly

room for advancements, particularly in the specification of

boundary conditions. Many gas dynamic solutions involve boundary

conditions specified at infinity, which are currently simulated

by placing boundaries very far from the main flow region. It

would result in a substantial computational simplification if

boundary conditions applicable closer in to the flow region of

interest could be generated for free gas boundaries. Wall bound-
ary conditions also frequently involve a fair degree of approxi-

mation, usually taking the form of accommodation coefficients

(though in this case the problem is as much a lack of basic
physical understanding of the gas-surface interaction process as

it is a lack of a good numerical simulation).

7.2 Initial Conditions

Since the direct simulation Monte Carlo method is inherently

an unsteady technique, an initial state must be specified in

order to advance the solution. (For situations where a steady

state result is desired, it is obtained as the long time solu-

tion to an unsteady problem. In this case the initial conditions

have no effect on the eventual solution, but they may well have

an impact on the speed with which that state is achieved.) It
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will be assumed here that the initial conditions correspond to

a uniform flow with the translational and internal modes being

in equilibrium. The specification of the inital conditions

therefore involves determining the state vector elements consiz-

tent with this condition for the desired number of molecules.

7.2.1 Number of Simulated Molecules and Weighting Factors

The desired number of simulated molecules of each species

in each cell (referred to here as M c) will usually be an input

quantity. (Typically, simulations aim for a total number of

molecules per cell in the neighborhood of twenty.) Given the
initial number density to be simulated for a species, ni, (which

will have been converted in the code to internal dimensions -

see Section 3) the weighting factor for a species in a cell can

be derived from an application of Eq. (26) to give

Wi = Vni/Mc , (78)

where V is the cell volume. If a species is not initially pre-
sent in a cell, then the weighting factor is set to a very

small but positive number, typically that which would correspond

to an initial mole fraction of one part per million or so. A

weighting factor of zero would cause an attempt to divide by

zero when molecules of that species move into the cell, but it

is generally best to start the weighting factors off small. As

the solution proceeds, the weighting factors are automatically

adjusted, but the adjustment upward is more direct and immediate

than the adjustment downward (see Sections 3.4 and 5.2).
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7.2.2 Initial Positions

The initial molecules assigned to a cell should have an

equal probability of being placed in any volume element of the

cell. The rules for accomplishing this will change with the

coordinate system being used, but they are readily derivable

from the general principle. As an example, consider an axisym-

metric simulation where a cell is bounded by the radial positions

r and r 2 (r1 < r 2 ), and the axial coordinates zI and z 2 (z1 < z 2 ).

Since the basic volume element in this coordinate system is

27rrdrdz = wd(r 2)dz, the volume elements will be sampled with
equal probability if r 2 and z are sampled randomly. Hence, a

molecule can be assigned axial and radial positions via

r = ]rl2+ $(r 2
2 -r 1

2 ) (79)

and

z = z 1 + 8(z 2 - z1 ) . (80)

(Recall that every time the symbol 8 occurs it implies a separate

random variable. In particular, one should certainly not use

the same random variable to determine radial and axial coordin-

ates. The second application would hardly qualify as "random".)

7.2.3 Initial Velocity Components

The thermal velocity components for a molecule in transla-
tional equilibrium (neglecting, for the moment, any mean flow
contribution) should be selected from the normalized Maxwellian

velocity distribution, f0 (v), given by

f0 a exp [-(cv) 2 ] , (81)
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where

CL '(82)

m is the species molecular weight, R0 is the universal gas con-

stant and T. is the temperature. Equation (81) applies for each

of the molecular velocity components, and must be sampled three

times for each molecule that compzises the initial state of the

simulation. A method for directly sampling from this distribu-

tion, as presented in Ref. 1, is

A1 = 27$ , (83)

A = 2-log (a)/• , (84)

v A2 sin (A1 ) . (85)

After the thermal velocity components are determined for each

molecule, then any mean flow velocity is simply added on. The

velocities are then transformed to internal units (see Section

3.3).

7.2.4 Initial Internal Energies

The only remaining element of the state vector to be speci-

fied is the internal energy. Internal energies for a gas in

equilibrium are distributed according to the normalized distri-

bution function f, given by

f, ,(/2-) exp (-c) , (86)

where C represents the number of internal degrees of freedom for

the species in question, r is the gamma function and ý is a

dimensionless internal energy, i.e.
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= EI/R 0 T• , (87)

where EI is the internal energy. In general, sampling of Eq.

(86) must be done via the acceptance-rejection method. In the

present SSI codes C is restrictnd to being greater than or equal

to two (or the trivial case of C equal to zero, which just gives

EI identically equal to zero). -If ý is precisely equal to two,

then a direct sampling of the internal energy is possible via

S= -log(3) . (C = 2) (88)

In the general case of C > 2, it proves convenient to first intro-

duce the transformation s = YT. s is then distributed in propor-

tion to the distribution g(s) given by

g(s) = 2s(-l) exp(-s 2 ) . (89)

Since g(s) is te be sampled via the acceptance-rejection method,

it is first necessary to determine its maximum value, gmax"

Standard calculus serves to show that gmax occurs at s = s*,

where

s*= 4(- 1)/2 , (90)

so

g_(s) _ 1 (1
gmax- )\ l exp [s*2 - s2] (91)

The sampling of Eq. (89) proceeds as follows:

9 A value of s is selected randomly from the interval

Smin to smax, where

"s = s* + 5 (92)
max

and

"Smin = greater of {0,s* - 5} . (93)
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(Note that in this interval g(s) goes from its

maximum value to a value on the order of 10-10

its maximum value. The transformation from Eq.

(86) to Eq. (89) was made mainly to achieve a

probability function wnich dies off extremely

rapidly away from its maximum value, so that

very little error is associated with considering

a finite subinterval for the sampled variable.)
"* g(s)/gmax is calculated via Eq. (91).

"* A random variable is generated, and the value of

s is kept if the random variable is less than

g(s)/gmax. Otherwise, the procedure is repeated

until a value of s is accepted.

"* When a value of s is selected, then the internal

energy is given by s2R0 T,.

As for all the initial conditions, the codes will automatically

then express the values in internal dimensions (see Section 3.3).

7.3 Wall Boundary Conditions

Boundary conditions in the direct simulation Monte Carlo

technique are applied for both wall and free gas boundaries.

In a wall boundary condition, whenever a molecule is simulated

to strike the wall some action must be taken. Unless the wall

is a condensing boundary the molecule will be reflected, and one

of several boundary conditions can be selected. The easiest

condition is that of a specularly reflecting wall, where the

molecule simply is replaced by its mirror image to keep it within

the solution region. Another frequently used condition is that

of a perfectly accommodating wall. In this condition, a molecule
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is reemitted from the wall after being selected from a distri-

bution characteristic of the wall temperature and velocity. To

date, wall boundary conditions have not been required in the

SSI codes, and they will not be discussed further here. They

are discussed at some length in Ref. 1, including the intermed-

iate case of partial accommodation.

7.4 Free Gas Boundary Conditions

In many cases, the boundary condition is meant to simulate

a region of uniform equilibrium flow. Molecules leave the

solution region in the normal course of their trajectories,

and they simply disappear from the simulation. Molecules are

introduced from outside the boundary as selected from distri-

butions appropriate to incoming molecules in the undisturbed

flow. It should be stressed that this is not the same as simply

sampling a Maxwellian velocity distribution, since it is the

molecular flux across the boundary which must be correctly sim-

ulated. Hence, molecules with a large component of velocity

inward from the boundary are more likely to be selected than

they would be in choosing molecules appropriate to a static

distribution as was done for the initial conditions described

above.

7.4.1 Incoming Number Flux

The first requirement is to determine the number of mole-

cules which should be introduced across the boundary during

the solution time step Atm. The incoming number flux, q,

(molecules per unit area per unit time) can be expressed( 1 )

q ni {exp(_w2)/_VTr + w[l + erf(w)] } /2a (94)
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where

w = cu cos(e) , (95)

and e represents the angle between the inwvard surfact- normal and

the mean flow, which has a magnitude u (i.e., u cos(6) is the

inward component of the mean flow velocity), ni is the far field

number density of the species of interest and a is given in

Eq. (82).

Equation (94) must be applied for each cell on the boundary

and for each species that exists in the ambient. The number of

simulated molecules to be introduced into the cell, Nb, is given

by

Nb = qAcAtm/W , (96)

where A is the area of the cell along the boundary and W is

the weighting factor for the species and cell in question.

7.4.2 Incoming Molecular Velocity Components

A coordinate system should be set up locally at the bound-

ary such that one direction is in the direction of the inward

normal and the other two directions are perpendicular to it.

Velocity components are first determined in terms of this local

coordinate system, and then transformed, if necessary, to the

main code coordinate system. In the local coordinate system,

the velocity components parallel to the surface are determined

as discussed above for initial state molecules, but the inward

component of velocity must be selected in proportion to the

distribution h(v) given by

h(v) = (v + w)[exp -(cv) 2 ] , (97)
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which must be sampled via the acceptance-rejection method.
(Only positive v is allowed, of course, from the definition
of the coordinate system.)

7.4.3 Incoming Molecular Position

An initial entry position should be selected for the mole-
cule such that the flux is randomly distributed. Assuming there
is no variation of e across A this means that each area elementI c
of the exposed cell area should have an equal probability of
being selected. Once the initial entry position is selected,
then the molecule should be translated a random fraction of
Attm along its trajectory to determine its actual location. All
of the considerations discussed in Section 5 with regard to
molecular translations apply to this translation and, in partic-
ular, it must be possible to dynamically adjust the weighting
factor as required.

7.4.4 Incoming Molecular Internal Energies

The internal energies are selected as described in
Section 7.2.4.
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8. STATISTICAL SAMPLING OF OUTPUT

8.1 General Considerations

It is safe to say that the molecular state vectors as they

exist in the computer do not comprise the desired output of

the procedure. With rare exceptions, it is usually macroscopic

quantities such as temperature, density, mean flow velocity,

etc., which are of interest - not the microscopic quantities

represented by the state vector components of an individual

simulated molecule. The generation of the desired output

requires that the macroscopic quantities of interest be repre-

sented in terms of statistical sums of the available microscopic

quantities; and it is the main purpose of this section to pre-

sent these correspondences. All sums are kept in terms of
"Etreal" molceules and events, i.e., the current weighting fac-

tors are included in the sums. This is essential since the

weighting factor determines the statistical importance of a

given molecule. Since the weighting factors are dynamically

and unpredictably adjusted as the solution progresses, it would

not be possible to go back and add in the effect of weighting

factors a posteriori.

In general, it must be decided ahead of time exactly what

output is desired from the code, and therefore what statistical

sums should be kept to generate it. There is a vast amount of

potential information in the simulation, and it is not reasonable

to store all possibly interesting quantities in all runs. On

the other hand, it is wasteful to completely rerun a case just

because the user decides there was an additional quantity he

was interested in. The selection of output for a given run,

therefore, unavoidably requires user judgement. Once the
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user has decided upon the required output, the determination of

which statistical sums should be kept can be done automatically

by the code. Care is taken to make sure that a statistical sum

is not duplicated internally if it is required by more than one

requested output quantity.

Some initial words of caution are required. By its nature,

the direct simulation Monte Carlo method works with far fewer

molecules than nature does, and it therefore exhibits consider-

ably greater statistical variation in its macroscopic predictions.

To reduce these variations, the codes are run repeatedly for the

same case, increasing the statistical base from which the macro-

scopic output is derived. If care is taken to use efficient

techniques, such as described in this report, then useful

results can usually be obtained with a modest computational

effort. This statement must be tempered, however, by a reali-

zation of the convergence rate for Monte Carlo sampling. Basic-

ally, the statistical error in the output converges as one over

the square root of the sample size (or run time). Hence, if a

solution looks good, but the user decides he would like one
more significant digit (i.e., he would like the statistical

error to be reduced to 0.1 times its current value) it would

require that the run time be increased by a factor of 100! It
can be seen that the desire for more accuracy can very quickly

turn the most efficient code into a money gobbling nightmare.

When using a Monte Carlo technique, one must accept some sta-

tistical scatter in the output.

8.2 Sampling of Instantaneous Output Quantities

Instantaneous output quantities are those which are, in
principle, derivable from an instantaneous "snapshot" of the

solution. These quantities, such as density, temperature and

velocity, can be determined by examining the molecular state
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vectors at a particular time in the simulation. The code
pauses in the simulation and uses the molecular state vector

elements to add values to statistical sums appropriate to the
various cells and the particular time that it paused. It then

proceeds with the simulation until the next sampling time. As

the code goes thrugh its successive runs, it stops at the same

points in the simulation every time and adds to the statistical

base for the sums. The items listed below, with their statis-

tical definitions, are selectable as output requests in the SSI
codes. Summations are made over all applicable simulated mole-

cules, which includes Nrun separate runs.

Total Number Density

n - VN 1 Wi (98)
runi

Mean Molecular Weight

Z7 Wimi
M (99)

wi

j 'th Velocity Component

ZWimiVj.i
Vi W- (100)

i
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Overall Translational Temperature

1 ( + S + $5
T = 3RS 1 (101)

01 12 6

where

S = Z W (102)
i

= Z Wimi (v2i+ v2i+ ) (103)
i

S3  = Wimivli (104)

S4  = Wimiv 2 i (105)

S5  = Wiiv3i (106)

S = Wimi (107)

Translational Temperature in j'th Direction

T. - S 2 (108)
0 1
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where

S = W.m.v2. (109)
7 1 1 jJ.

i

S = W.m.v.. (110)
i

Internal Mode Temperature

2 WiEii

T = (11)

R0  wi~ i
i

With the exception of Eq. (99), all of the above quantities can

also be defined and calculated for any specified species. The

sums are the same except that only molecules of that species

are considered. Before printing output quantities, they are

always transformed to standard dimensions from the internal

scales.

8.3 Sampling of Time Averaged Quantities

Some additional quantities of interest are not sampled at

a separate sampling time as described above, but rather as the

sir 1lation evolves. Examples of such quantities are collision

rates, reaction rates, mean velocities between molecules, etc.

In general, these quantities depend on the relative state of

more than one type of molecule, and they are by their nature
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expressed as average values over a finite time interval. The

formulas for calculating these quantities are little more than

event counters, and will not be included here. The following

quantities are currently available as output:

"* Mean Relative Velocity Between any Two Species

"* R.M.S. Deviation of Mean Relative Velocity

Between any Two Species

"* Mean Product of Cross Section Times Relative
Velocity Between any Two Species

"* Collision Rate Between any Two Species

"* Reaction Rate for any Chemical Reaction.

The sampling for all of these quantities occurs in the collision

simulation routines. As pairs are considered as possible colli-

sion partners, statistics are kept, if necessary, to generate

the first three quantities. Statistics on collisions and

reactions are kept as they occur.
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